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Abstract. Equations for steady plane flows of non-Newtonian electrically conducting fluids of finite and infinite
electrical conductivity are recast in the hodograph plane by using the Legendre transform function of the
stream-function when the magnetic field is normal to the flow plane. Four examples are worked out to illustrate
the developed theory. Solutions and geometries for these examples are determined.

1. Introduction

This paper deals with the application of the hodograph transformation for solving a system
of non-linear partial differential equations governing steady plane incompressible flow of an
electrically conducting second-grade fluid in the presence of a transverse magnetic field.
Equations governing second grade or order [1, 2] fluids are, in general, of third order, as
compared to the second-order Navier-Stokes equations and, therefore, application of the
hodograph transformation to these flows is a credit to this transformation technique.
W.F. Ames [3] has given an excellent survey of this method together with its applications to
various other fields. Recently, Siddiqui et al. [4] used the hodograph and Legendre trans-
formations to study electrically non-conducting plane steady non-Newtonian fluid flows.
Also, M.K. Swaminathan et al. [5] applied this approach to transverse MHD Newtonian
fluid flows. Since electrical conductivity is finite for most liquid metals and it is also finite for
other electrically conducting second-grade fluids to which single-fluid models can be applied,
our accounting for finite electrical conductivity makes the flow problem realistic and attrac-
tive from both a mathematical and a physical point of view. We have also included
electrically conducting second-grade fluids of infinite electrical conductivity to make a
thorough hodographic study of these fluid flows and to recognize the dawn of super-
conductivity in science.

The plan of this paper is as follows: in Sections 2 and 3, following the reformulation
of the flow equations for transverse plane flows into a convenient form by using M.H.
Martin's [6] perceptive idea of reducing the order of the governing equations the flow
equations are transformed to the hodograph plane so that the role of the independent
variables x, y and the dependent variables u, v (the two components of the velocity vector
field) is interchanged. We introduce a Legendre-transform function of the streamfunction
and recast all our equations in the hodograph plane in terms of this transformed function
in Section 4. The equation that this function must satisfy is then determined and the results
are stated in the form of Theorems I and II. Section 5 is devoted to four applications of this
approach.
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2. Equations of motion

The flow of a homogeneous electrically conducting incompressible second-grade fluid, in the
presence of a magnetic field, is governed by

div V = 0, (1)

eV = divT + u*(curl H) x H, (2)

aH 1
a = curl(V x H) + V2 H, (3)at It*t

div H = 0 (4)

and the constitutive equation for the Cauchy stress T,

T = -pI + A, + alA2 + 0a2A.

Here V is the velocity field vector, H the magnetic vector field, p the dynamic pressure
function, the constant fluid field density, u the coefficient of dynamic viscosity, * the
constant magnetic permeability, a the electrical conductivity, and a,, a2 are the normal stress
moduli. The Rivlin-Ericksen tensors A, and A2 are defined as

A, = VV + (VV)T , A2 = Al + (VV)TA, + A (VV).

Equations (1) to (3) form a system of seven equations in seven unknowns V, H and p. Equation
(4) is an additional condition on H expressing the absence of magnetic poles in the flow.

Steady plane transverse flow

A steady plane flow in the (x, y) plane is said to be a transverse flow if the magnetic field
vector is perpendicular to the (x, y) plane which contains the fluid flow vector field and all
the flow variables are functions of x and y. Considering our flow to be steady plane
transverse flow, we take V = (u(x, y), v(x, y), 0), H = (0, 0, H(x, y)) and alaz - 0.

Introducing the two-dimensional vorticity function o(x, y) and a generalized energy
function e(x, y) defined by

av au
co(x, y) -

ax ay'

H2

e(x, y) = eq 2 - a,(uV2 u + vV2 v) - (3a, + 2 2)lA,l 2 + p + t* (5)

where q2 = U2 + v2, V2 = a2/aX2 + a2/ay2 and

IA, I = 4 (au) + 4 au av +2 ax)ax +4 y y ax)
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and introducing the definiton of V and H into the above system of equations, we obtain the
system

u + av = 0, (continuity)
ax ay

ae ao
= vO - -- 1 V2Vo,

(linear momentum)
ae aco

= -Qu + C - luV2 O, (6)y ax

aH v + 2 ) 0, (diffusion)

av au
x ay co, (vorticity)

where VH = (p*a)-, of five partial differential equations in five unknown functions u, v, cO,
H and e as functions of x, y. Once a solution for these is found, the pressure function is
determined from the expression for e(x, y) given in (5). This system of equations governs
steady plane transverse flows of an incompressible second-grade fluid of finite electrical
conductivity. For the motion of a second-grade fluid of infinite electrical conductivity,
we only replace the diffusion equation in the above system of equations by u(aH/ax) +
v(aH/ay) = 0 since v, - 0 for such fluid flows.

3. Equations in the hodograph plane

Letting the flow variables u(x, y), v(x, y) be such that, in the region of flow, the Jacobian

J(x,y) = a(u, ) : O0 0 < IJI < , (7)a(x, y)

we may consider x and y as functions of u and v. By means of x = x(u, v), y = y(u, v), we
derive the following relations:

au ay au ax av ay av ax
ax av' ay I ' ax = u' ay = J au'

We also obtain the relations

ag a(g, y) a(g, y) ag a(g, x) a(x, g)
Ax (x, y) (u, v)' =ay (u, v) (u, v)'(9)ax O(x, Y) (u, ' ay a(u, ) a(u, v)'
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where g = g(x, y) = g(x(u, v), y(u, v)) = g(u, v) is any continuously differentiable func-
tion and

,u, v) : ~a·x, Y)lJ = J(xy) La(uv) a( x)] = J(u, v) (10)
(xy) a(u, v)] [

Using these transformation relations for the first-order partial derivatives appearing in
system (6) and the transformation equations for the functions to, H, e, defined by

wc(x, y) = co(x(u, v), y(u, v)) = to(u, v),

H(x, y) = H(x(u, v), y(u, v)) = H(u, v),

e(x, y) = e(x(u, v), y(u, v)) = e(u, v),

the system (6) is transformed into the following system in the (u, v) plane:

ax ay
Ox + ay O , (11)Au av

(e, ) ) - J - a(x, Jw1) a(Jw2, ) (12)J I a(v) -- (u, )

8 _(x =) [80r)+ UJ(x,Jw 1 ) a(Jw2,y) (13)
a(u, v) - euo + )lw2 + uJ (u, v) ) (13)

uG + vG2 H [ a(JG, y) + a(U, VJG) 0 (14)

J(xv - YU) = o, (15)

where

a(x, w) O(to, y)
W1 = W,(U,V)= W2 = W2(U, V) --W1 U, V a = (u, v)' a 2(,) (u, v)'

a(H, y) (x, H) (16)
GI = G,(u, v) = (u, ' G2 = G2(u, v) = (u, v) 

System of equations (11) to (15) is a system of five equations for the five unknown functions
x, y, o, H, e of u, v, when J, wI, w2, G. and G2 are eliminated using (10) and (16). Once a
solution x = x(u, v), y = y(u, v), co = o(u, v), H = H(u, v), e = e(u, v) is obtained, we
are lead to the solutions u = u(x, y), v = v(x, y) and therefore to = o(u(x, y), v(x, y)) =
co(x, y), H = H(u(x, y), v(x, y)) = H(x, y), e = e(u(x, y), v(x, y)) = e(x, y) for the system
of equations (6) governing the finitely conducting flow. The above analysis also holds true
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for infinitely conducting second-grade fluid flows. However, for these flows, the diffusion
equation is replaced by uG, + vG2 = 0.

4. Equations for the Legendre transform function and H(u, v)

The equation of continuity implies the existence of a streamfunction *(x, y) such that

di = - vdx + udy or A= -v, Ay = u.ax ay (17)

Likewise, equation (11) implies the existence of a function L(u, v), called the Legendre
transform function of the streamfunction *(x, y), so that

aL aL
dL = -ydu + xdv or = -y, = x,

au av

and the two functions *(x, y), L(u, v) are related by

L(u, v) = vx- uy + (x, y).

(18)

(19)

Introducing L(u, v) into the system (11)-(15), with J, w,, w2, GI, G2 given by (10),
(16) respectively, it follows that (11) is identically satisfied and the system may be replaced
by

a _ , e) a (L, Jww) a (IL, Jw2 )

a(u, v) = - 'I.w 1 - I vJ a(u, V) a(u, ) 

a a, e) 0 a' J w) a ( U Jw2) 

J = -uO - UJW2 + tx2uJ
a(u, V) a(u, V) a(u, v)

(20)

(21)

uG, + vG2 -
[a J iG,) a(u, j2)

a(u, v)

J 02L + a 2 L
V2 + au2I= ,

0, (22)

(23)
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where now

6a2L 02L / 2L2 -I

= L aUj - au2alv) jI

a (L, ( )
(u, v) '

a (aL, ()

= (, (H)

2 = u
6(u, ) '

(24)

for four unknown functions L(u, v), co(u, v), H(u, v) and e(u, v) after eliminating J, w,, w2,
G1 and G2.

By using the integrability condition

aL_ (Ja ,LJ J __ ( ) _)_a2L a -J2L 0 a 2L, 2L ]( a /
[ auav a6v avu au2 a auav au, av) (u, )

i.e., 02e/axay = a2e/yax in the (x, y)-plane, we eliminate e(u, v) from (20), (21) and obtain

a[# (V u,) + ( J)]u,
a(u, v) (u, )

+ [a63 (6L, ,w)/6(u, V)

a 6 L , {L ( L ,a 'u av(, Jw1 /(u, v) + a 'Jw2'
(au' I U

a(u, v)

!)(u, V)}]
= O(UW2 + vwI)

(25)

where J, w,, w2 are given in (24). Summing up, we have the following theorem:

THEOREM I. If L(u, v) is the Legendre transform function of a stream-function of steady, plane,
transverse, incompressible, finitely conducting second-grade fluid flows and H(u, v) is the
transformed magnetic field vector component function, then L(u, v) and H(u, v) must satisfy
equations (25) and (22) where co(u, v), J(u, v), w, (u, v), w2 (u, v), GI (u, v), G2 (u, v) are given
by (23), (24).
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If the fluid has infinite electrical conductivity, then the transformed diffusion equation
becomes

uG, + vG2 = 0 (26)

where GI, G2 are given in (24). Hence, we have the following theorem.

THEOREM II. If L(u, v) is the Legendre transform function of a stream-function of steady, plane,
transverse, incompressible, infinitely conducting fluid flows and H(u, v) is the transformed
magneticfield vector component function, then L(u, v), H(u, v) must satisfy equations (25) and
(26), where o(u, v), J(u, v), wl(u, v), w2(u, v), G,(u, v), G2(u, v) are given by (23), (24).

Once a solution L(u, v), H(u, v) is found, for which J evaluated from (24) satisfies 0 <
IJI < , the solutions for the velocity components are obtained by solving equation (18)
simultaneously. Once the velocity components u = u(x, y), v = v(x, y) are obtained, we
have H(x, y) in the physical plane from the solution for H(u, v) in the hodograph plane. We
then determine the vorticity and the energy function by using V(x, y) in the definition of
vorticity and the linear momentum equations in system (6), respectively. Finally, the pressure
function is obtained from the expression for e(x, y).

We now develop the flow equations in polar coordinates in the hodograph plane. Defining

u + iv = qeio (27)

we get the following transformations:

a a sin 0 a a a cos 0 a
a = cos - a = sin 0 + 

au - Oaq q aO' av aq q--

a(F, G) a(F*, G*) a(q, 0) 1 a(F*, G*)
a(u, v) O(q, 0) (u, v) q a(q, 0)

where F(u, v) = F*(q, 0), G(u, v) = G*(q, 0) are continuously differentiable functions. On
using these relations, and regarding (q, 0) as new independent variables, the expressions for
J, , w1, 2, G1, G2 in the (q, 0) plane take the form

202 L* O L* 02L* aaL* 02L*\2 1-I
J*(q, ) = q4 q. 2 .q "+ - q a 

- aq a- ) '

2L* 1 a2L* + aL*1
o*(q, 0): J*L-~~+ q- 0-' + q q]q 2 + 0q aq 

(sin o L* cos 0 L* \

a q cs s0 o*

a ( O aL* sin 0 aL* )
w*{a~ 0', 

0)
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G*(q, ) =

G2*(q, ) =

1,(,,, dL* sin OL*
1 (cos o L* sin A

q a(q, ) '

( L* + cos 0 L* H*
_ , .B--f----a4 4 s 80'
q a(q, 0)

Equations (25) and (22) are transformed to the (q, 0) plane as

JX* + a [sin

aL* cos 0 L* J
O (sin + - , J*X

0 Oq q 0'
8(q, 0)

(cos aL* sin L* J*X*)
+ cos 0 = pq(cos w2* + sin Ow*),

a(q, 0) 2

(cos L sin L* J*G*
q(cos OG,* + sin OG*) - q (q, 

(sin0L* cos 0 L* J*G*
(iJ + ]= O. 0,

(q,here X* is defined as

where X* is defined as

(sin L*..", I~ I a in
a(q, O)

/ (os0L* sin 0 L* j.).\
a qcos a - a IO '

+

cos 0 IL* *
+ J wIq O0'

1 (32)
a(q, 0) J'

Having developed the above transformations, we state the following corollaries which
respectively follow from Theorem I and II.

COROLLARY I. If L*(q, 0) and H*(q, 0) are the Legendre transform function of a streamfunction
and the magnetic field vector component function, respectively, of the equations governing

(29)

(30)

(31)

Z--k, U) 
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the motion of steady plane transverseflows of incompressiblefinitely conducting second-grade
fluids, then L*(q, 0) and H*(q, 0) must satisfy equations (30) and (31) where J*, o*, w*, w*,
GG*, G2*, X* are given by (29) and (32).

COROLLARY II. If L*(q, 0) and H*(q, ) are the Legendre transform function of a stream-
function and the magnetic field vector component function, respectively, of the equations
governing the motion of steady plane transverse flows of incompressible infinitely conducting
second-grade fluids, then L*(q, 0) and H*(q, 0) must satisfy equations (30) and

cos OG;* + sin G2* = 0 (33)

where J*, o*, w*, w*, G*, G,*, X* are given by (29) and (32).

Once a solution L*(q, 0), H*(q, 0) is known, we employ the relations

aL* cos 0 aL* sin 0 aL* aL*
x = sin 0-+ , y = -cos 0

aq q 0 q a aq
(34)

and (27) to obtain the velocity components u = u(x, y), v = v(x, y) in the physical plane.
Having obtained the velocity components, we get H(x, y) in the x, y plane from H*(q, 0). The
other flow variables are then determined by using the flow equations in the physical plane.

5. Applications

In this section, we consider some of the flow problems as applications of Theorems I and II
and Corollaries I and II.

Application I

Let

L(u,v) = Au2 + Bv 2 (35)

be the Legendre transform function, where A, B are arbitrary constants
non-zero. Using (35) in equations (23), (24), we obtain

and A, B are

1 A +B a
= 4AB =2= B w = w2 =0, G = 2A-4AB' 2AB all, G2 = - 2B O3au,

(36)

We now consider the finitely conducting and the infinitely conducting case separately by
applying Theorem I and II, respectively.

127
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Finitely conductingfluid

Employing (35), (36) in equations (25) and (22), we find that (25) is identically satisfied and
H(u, v) must satisfy

u H v H r 1 a2H a2H(37)
B v- A u v 2 O 2 + 2A [ u2B = 0. (37)

Assuming H(u, v) = F(u) + G(v) to be the form of a possible solution for H(u, v), we find
that (37) becomes

B G'(v) - A F'(u) - VH 2B2 G"(v) + 2A2 F"(u) = 0. (38)

Differentiating twice with respect to u, we get

F"'(u) v() v + F)(u) = 0.
A 2A2

The above equation holds true for all v if

F"'(u) = , VH2 F(i)(u) = 0. (39)
A 2A2

Therefore, we have

F(u) = - U2 + C2u + C3 ,

where C,, C2, C3 are arbitrary constants.
Using F(u) so obtained in equation (38), we find that G(v) must satisfy

G' C, v c2 , G" vHCI 0.
{ A u 2B G + 2A2j 0

This equation holds true for all u if

G' Cv - V, VH C

G- A = v + 2 + + =(40.

Solving equations (40), we obtain

G(v) = -C v 2 + C4 , C2 = 0 and A = -B.
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Therefore, we have

L(u,v) = A(u 2 - v2), H(u, v) = C (u2 - v2) + C5

where C5 = C3 + C4 .
Using L(u, v) = A(u2 - v2 ) in (18) and solving the resulting equations simultaneously,

we get

V = (u,v) = 2Ay 2A) (41)

Employing (41) in the solution for H(u, v), we obtain

H(x,y) = 2 - ) + C5. (42)

Using = 0, equation (41) in the linear momentum equations in system (6) and inte-
grating, we obtain e(x, y). Employing this solution for e(x, y) and (41) in (5), the pressure
function is determined to be

p(x,y) = C6 (X + y) + _ X) + C (43)
8A2 2A2 2 L8A2 

where C6 is constant.

Infinitely conductingfluid

Employing (35), (36) in equations (25), (26), equation (25) is identically satisfied and (26)
takes the form

u AH v H
H v = O. (44)

B av A u

A solution for H(u, v) is

H(u, v) = (Bv2 + Au 2 ) (45)

where p is an arbitrary function of its argument.
Using L(u, v) = Au 2 + Bv2 in (18) and solving simultaneously for u, v, we get

V = (u, v) = ( 2A' 2B) (46)

129
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Following the same procedure as in finitely conducting fluid flow, we obtain

H(x,y) = XI +( (47)

and

4 r2 X21 3crl + 2a2 lA-B\2 A* r fX2 y2 \2

p(x, y) = 8ABA + 8 AB 2 P 8B 8A

(48)

where C7 is an arbitrary constant.
Summing up, we have the following theorems:

THEOREM III. If L(u, v) = A(u 2
- v2 ) is the Legendre transform function of a streamfunction

for a steady, plane, transverse, incompressible, finitely conducting second-gradefluidflow, then
theflow in the physical plane is aflow with hyperbolic streamlines withflow variables given by
(41) to (43).

THEOREM IV. If L(u, v) = Au 2 + Bv2 is the Legendre transform function of a stream-
function for a steady, plane, transverse, incompressible, infinitely conducting second-grade
fluidflow, then theflow in the physical plane is aflow with flow variables given by (46) to (48)
having

x2 y2
4B + 4A = constant

as its streamlines.

Application II

We let

L(u, v) = Auv + Bu2 + Cu + D (49)

to be the Legendre transform function, where A, B, C, D are arbitrary constants and A 0.
Evaluating J, wo, w, w2, G. and G2, by using (49) in equations (23), (24), we have

1 2B OH OH OH
J = - , W I = w, = 2 = 0, G, = 2B -v G2 = A-.

v T au av
(50)
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Finitely conducting fluid

Using (49), (50) in equations (25) and (22), we find that (25) is identically satisfied and
H(u, v) must satisfy

AvOH AuH +H 2H ( 4B2 \ 2H 4B 02H 1
[2Bu + ,Av -- Au+ H + A A u. (51)

A solution for H(u, v) satisfying (51) is obtained to be

H(u,v) = DI exp [ u 2 du + D2

where Dr, D2 are arbitrary constants.
Proceeding as in Application I, we get

V = (U, V) = + A + A

H(x, y) = exp [2A xVH]dx + D2, (52)"(x, y) D-

p(x, y) -2X 
(X 2 + y) Ly + (6ax + 402) A2A2 A2 A4

[Ifexp [2 ]dx + D2 -+ D3

2 I 2AVH] I

where D3 is an arbitrary constant.

Infinitely conductingfluid

In this case, only the diffusion equation is replaced by

OH OH
(2Bu + Av) - Au- = O.

Solving this equation, we obtain

H(u, v) = (Bu2 + Auv)

where p is an arbitrary function of its argument.

131
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We proceed as before and obtain

V = (u,v) = -A A

H(x,y) = c(xy + xX2 + Cx

and

p(XY) LC A 2 + B 2
p(x, y) - (x 2 y + y2) q (6a, + 4a2) A2A A 2 A4

-2 [(xy + -X2 + C x)} + D4 (53)

where D4 is an arbitrary constant.
Summing up, we have the following theorem:

THEOREM V. If L(u, v) = Auv + Bu2 + Cu + D is the Legendre transform function of a
streamfunction for a steady, plane, transverse, incompressible,finitely conducting second-grade
fluidflow, then theflow in the physical is given by equation (52) with (x/A)(y + Bx/A + C) =
constant as its streamlines.

THEOREM VI. If L(u, v) = Auv + Bu2 + Cu + D is the Legendre transform function of a
streamfunction for a steady, plane, transverse, incompressible, infinitely conducting second-
gradefluidflow, then theflow in the physicalplane is given by equations (53) with (x/A)( y +
Bx/A + C) = constant as its streamlines.

Application III

Let

L*(q, 0) = F(q), F'(q) O, F"(q) 0. (54)

Employing (54) in equations (29) to evaluate J*, (o*, w*, w2*, G*, G*, x and y, we obtain

J* q q qF"(q) + F'(q)
F'(q)F"(q) ' F'(q)F"(q)

1 1
w* = co*' cos OF'(q), w* = - *' sin OF'(q),

q q

1 [rr~o ODnl~\ H* OH* G, - [cos OF"(q) + sin OF'(q) dq (55)

10* O H*]
G* = q [sin OF"(q) -0 - cos OF'(q) q 

x = F'(q) sin 0, y = -F'(q) cos 0.



Non-Newtonian MHD transversefluid flows

We now study finitely conducting fluid flow and infinitely conducting fluid flow as
applications of Corollaries I and II.

Finitely conducting fluid

Employing (54), (55) in equations (30) and (31), we find that F(q) and H*(q, 0) must satisfy

o*' + F'(q) F()* = 0 (56)

F( O - [COS OF(q)(J*G*)o + sin OF'(q)(J*G*)q

+ sin OF(q)(J*G2) - cos F'(q)(J*G2*)q] = 0, (57)

so that F(q) is the Legendre transform function of a streamfunction.
Since equation (56) is identically satisfied when co*' = 0 and can be rewritten as

CO*" F"(q) F'"(q)
+ = 0 (58)to*' F'(q) F"(q)

when o*' 0, it follows that we have to deal separately with L*(q, ) = F(q) having
variable vorticity and L*(q, 0) = F(q) having constant vorticity.

Case 1. (Variable vorticity). By the expressions for x and y in (55), we get

dr
r = + y = +F'(q), - = +F"(q). (59)

We integrate (58) twice with respect to q, and obtain

co* = El In IF'(q)l + E2 (60)

where E, and E2 are arbitrary constants.
Substituting for o* given in (55) into (60), we have

dq
q + r d = +[E, r In r + E2r], (61)

since F"(q) • 0 and, therefore, dr/dq = (dq/dr)- '.
Integrating (61), we get

q [ rlnr + (2E2- E) + E3] (62)
2 4r

where E3 is an arbitrary constant.

133
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Using (59), (62) in equation (34) and making use of the definitions u = q cos 0, v =
q sin 0 and co = v/x - u/Oy, we get

u(xy) = _y[ n(2 + y2) + 2Ez - E E3 ]

v(xy) = x In (x2 +y 2) + (2E 4 ) + ,2 ] (63)

(x, y) = Iln(x + y) + E2 .

Transforming the diffusion equation (57) back to the (x, y)-plane, we find that H(x, y)
must satisfy

4 Iln(x2 3+ + 3] (x - Y 
(E2E - E y 2 j\\X y

- VH (x 2 +a2 ) = . (64)

A solution for H(x, y) is found to be

H(x,y) = E4 In 2 ) + E (65)

where E4, E5 are arbitrary constants.
Using (63) in the linear momentum equations of system (6) and integrating, we get e(x, y).

Using this solution for e(x, y) and (65) in (5), the pressure function is determined to be

p(x,y) = El [E3 + (x2 + y2)][ln(x2 + y2 )]2

[ 3 E1E3 +(EE2 E- ) ( 2 + y2)] In (x2 + y 2)
2 2 4

+ [E2 + 5E - EE2 (x 2 + y2) E3 ( 2 + y2)-1

-- #E t tan-' )+ iE In (x2 + 3) + (2E 2 - E + E3G) 4 4 X + +

3a, + 22 rE2 4E32 ElE3
2 4 (X2 + 2)2 X + 2

- 2P [E 4 In 2 + E5 + E6 (66)

where E6 is arbitrary constant.
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Case 2. (Constant vorticity). Using o* = o0 = constant in the expression for o* given in
(55), we get

qF"(q) + F'(q) - o0F'(q)F"(q) = 0. (67)

We integrate equation (67) with respect to q and obtain

ooF'2 (q) - 2qF'(q) + 2E7 = 0 (68)

where E7 is an arbitrary constant.
Employing F'(q) given by (59) in equation (68) and solving for q, we have

q = + + E7 ] (69)

Proceeding as in the variable vorticity case, we obtain

u(xy) = - Wv(xy) = x[ E'7 , (70)+ 7u(x, ) = -Y 2 x + y2 V(X y) 2 (70)

H(x,y) = E4 In 2 ) + E5 , (71)

p(x, y) = E 2 E7p(x, ) = 8(X 2 + y2) + oE7 In (x2 + y) E7 oE7
[8 2 2(x 2

+ y2) 

+ (6a, + 4(2)2E7 [E4 lnX2 ) + E5] + E (72)

where E8 is an arbitrary constant.

Infinitely conducting fluid

In this case, the transformed diffusion equation reduces to

AH*

a0

Therefore, we have

H(q, 0) = (q)

where i is an arbitrary function of its argument. In the (x, y)-plane, we have

H(x, y) = 4)(q) (73)

where q is given by (62) for L*(q, 0) = F(q) having variable vorticity and q is given by (69)
for L*(q, 0) = F(q) having constant vorticity.
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Therefore, we obtain the flow variables as follows:

(i) Variable vorticity
u(x, y), v(x, y), w(x, y), H(x, y) are given by (63), (73) and

p(x, y) = El E 3 + l(x2 + y2) [ln(x2 + y)] 2

+e [EE ElE3 + (EiE2 - E) (X2 + y2)]ln(x + y2 )

+ 4 2 8 E E2] (x + y) ( x2 + ) '

-El tan+ I X ey In (x2 + y ) +-

42 8 2

-juE, tan + , El In +(2E2 - El. E3

+3c_ + 2E2 _ 4E 2 E+ E9 (74)
2 [4 (X + y2)2 X2 + - [(q)]2 + E

where q is given by (62) and E9 is an arbitrary constant.

(ii) Constant vorticity
u(x, y), v(x, y), o(x, y), H(x, y) are given by (70) and (73) and

p(x, Y) = Q[o (X2 + y2) + E7 In (x2 + y2 ) E7 (+E7
L8 2 2(xa +y2)

+ (6al + 4a2 )E7 _ P- [O(q)]2 + Elo (75)
(x2 + y2)2 2

where q is given by (69) and E 0l is an arbitrary constant. Summing up, we have the following
theorems:

THEOREM VII. If L*(q, ) = F(q) is the Legendre transform function of a streamfunction for
a steady, plane, transverse, incompressible,finitely conducting second-gradefluidflow, then the
flow in the physical plane is

(a) given by equations (63), (65) and (66) with

(x2 y2) Eln(x2 +y 2 ) + 2- E + ln(x2 +y 2) = constant

as its streamlines, when vorticity is not a constant;
(b) given by equations (70) to (72) having

wo(X 2 + y) + 2E7 In (x2 + y2 ) = constant

as its streamlines, when vorticity is a constant.
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THEOREM VIII. If L*(q, ) = F(q) is the Legendre transform function of a streamfunction for
a steady, plane, transverse, incompressible, infinitely conducting second-gradefluidflow, then
the flow in the physical plane is

(a) given by equations (63), (73), (74) with

+( +y2)[ ¥1n( y- + ( + = constant

as its streamlines, when vorticity is not a constant;
(b) given by equations (70), (73), (75) with

wo(X2 + y2 ) + 2E7 In (x2 + y) = constant

as its streamlines, when vorticity is a constant.

Application IV

Let

L*(q, ) = A + B (76)

be the Legendre transform function, where A, B are arbitrary constants and A O0.
Using (76) in equations (29), we get

q4
J* =-A2, aw* = wI = w' = 0,

IFA aH* A OH*
G,* = - sin +-cos ], (77)

q 2 0e q aq 

IFA OH* A OH*1
G* = - sin8 0 - cos 

2 qLq Oq q2 O S 0 o

Finitely conducting fluid

Using (76), (77) in equations (30) and (31), we find that (30) is identically satisfied and H*(q,
0) must satisfy

AOH* [A AA - H sin (J*G*)o + - cos (J*G*)q

+ -sin (J*G)q- - cos (J*G*)o = 0. (78)
q2

137
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Using L*(q, 0) = AO + B in equations (34) and making use of (27), we obtain

Ax Ay
U(X, ) = 2' V(X,y) = x2 2' (79)

Transforming (78) back to (x, y)-plane, we have that H(x, y) must satisfy

Ax aH Ay AH %02H 02H 
VH y2)O* 0(80)

X2 + +l OX X2 + y2 ay VH x) (80)

Writing (80) in polar coordinates in the (x, y)-plane, we have H(r, 0) satisfying

02H (1 A\1 aH 1 02H
+r2 + +7.002 + 0. (81)

A solution for H(r, 0) satisfying (81) is

H(r, 0) = Ml 2 + H in r + M2 0 + M3 H rAIVH + M 4 (82)

where Ml, M 2, M3, M4 are arbitrary constants.
Employing o = 0, (79) in the linear momentum equations and integrating we obtain

e(x, y). Therefore, the pressure function is determined from the expression for e(x, y) to be

.eA2 2A2
p(r, ) = M 5 - 2-' + (3a, + 22) 

2 M + lnr) + M2 0 + M 3 H rAH + M 4 (83)

where M5 is an arbitrary constant.

Infinitely conducting fluid

In this case, the transformed diffusion equation is replaced by

OH*
A =0.

Oq

Therefore, we get

H*(q, 0) = (O)

where is an arbitrary function of its argument.
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In the (x, y)-plane, we have

H(x, y) = (tan- ()). (84)

Using L*(q, ) = AO + B and proceeding as before, we have

V = (u,v) = (x + y2,2 ) (85)

and

eAp2x, y) 2A2 l * [mc (y)] 2 (86)
p(x, y) = M, 2(x + y2) + (3a, + 22) (x 2 + y2)2 2 (x

where M6 is an arbitrary constant.
Summing up, we have the following theorems:

THEOREM IX. If L* (q, ) = AO + B is the Legendre transform function of a streamfunction
for a steady, plane, transverse, incompressible, finitely conducting second-grade fluid flow,
then theflow in the physical plane is given by equations (79), (82), (83) having tan- ' (x/y) =
constant as its streamlines.

THEOREM X. If L*(q, ) = AO + B is the Legendre transform function of a streamfunction
for a steady, plane, transverse, incompressible, infinitely conducting second-gradefluid flow,
then the flow in the physical plane is given by equations (84) to (86) with tan-' (x/y) =
constant as its streamlines.
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